X Chromosome Reactivation Dynamics Reveal Stages of Reprogramming to Pluripotency
نویسندگان
چکیده
Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.
منابع مشابه
Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming
Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced X...
متن کاملThe pluripotency factor-bound intron 1 of Xist is dispensable for X chromosome inactivation and reactivation in vitro and in vivo.
X chromosome inactivation (XCI) is a dynamically regulated developmental process with inactivation and reactivation accompanying the loss and gain of pluripotency, respectively. A functional relationship between pluripotency and lack of XCI has been suggested, whereby pluripotency transcription factors repress the master regulator of XCI, the noncoding transcript Xist, by binding to its first i...
متن کاملReversal of X chromosome inactivation: lessons from pluripotent reprogramming of mouse and human somatic cells
For reprints contact: [email protected] X chromosome inactivation (XCI) is a strategy used by mammals to silence genes along one of the two female X chromosomes and equilibrate expression dosage between XY males and XX females. This epigenetically-inherited silencing is established during early embryonic development and maintained thereafter through cell divisions. Seeding of multiple repr...
متن کاملUnique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state
Derivation of human naïve cells in the ground state of pluripotency provides promising avenues for developmental biology studies and therapeutic manipulations. However, the molecular mechanisms involved in the establishment and maintenance of human naïve pluripotency remain poorly understood. Using the human inducible reprogramming system together with the 5iLAF naïve induction strategy, integr...
متن کاملEpigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes
How various epigenetic mechanisms restrict chromatin plasticity to determine the stability of repressed genes is poorly understood. Nuclear transfer to Xenopus oocytes induces the transcriptional reactivation of previously silenced genes. Recent work suggests that it can be used to analyze the epigenetic stability of repressed states. The notion that the epigenetic state of genes is an importan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 159 شماره
صفحات -
تاریخ انتشار 2014